Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis (1909.03559v3)

Published 8 Sep 2019 in math.NA and cs.NA

Abstract: In this paper we provide a priori error estimates with explicit constants for both the $L2$-projection and the Ritz projection onto spline spaces of arbitrary smoothness defined on arbitrary grids. This extends the results recently obtained for spline spaces of maximal smoothness. The presented error estimates are in agreement with the numerical evidence found in the literature that smoother spline spaces exhibit a better approximation behavior per degree of freedom, even for low smoothness of the functions to be approximated. First we introduce results for univariate spline spaces, and then we address multivariate tensor-product spline spaces and isogeometric spline spaces generated by means of a mapped geometry, both in the single-patch and in the multi-patch case.

Citations (35)

Summary

We haven't generated a summary for this paper yet.