Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric Regularization based BERT for Pair-wise Semantic Reasoning (1909.03405v3)

Published 8 Sep 2019 in cs.CL

Abstract: The ability of semantic reasoning over the sentence pair is essential for many natural language understanding tasks, e.g., natural language inference and machine reading comprehension. A recent significant improvement in these tasks comes from BERT. As reported, the next sentence prediction (NSP) in BERT, which learns the contextual relationship between two sentences, is of great significance for downstream problems with sentence-pair input. Despite the effectiveness of NSP, we suggest that NSP still lacks the essential signal to distinguish between entailment and shallow correlation. To remedy this, we propose to augment the NSP task to a 3-class categorization task, which includes a category for previous sentence prediction (PSP). The involvement of PSP encourages the model to focus on the informative semantics to determine the sentence order, thereby improves the ability of semantic understanding. This simple modification yields remarkable improvement against vanilla BERT. To further incorporate the document-level information, the scope of NSP and PSP is expanded into a broader range, i.e., NSP and PSP also include close but nonsuccessive sentences, the noise of which is mitigated by the label-smoothing technique. Both qualitative and quantitative experimental results demonstrate the effectiveness of the proposed method. Our method consistently improves the performance on the NLI and MRC benchmarks, including the challenging HANS dataset \cite{hans}, suggesting that the document-level task is still promising for the pre-training.

Citations (14)

Summary

We haven't generated a summary for this paper yet.