Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-Free Testing of Linear Functions on R^n (1909.03391v1)

Published 8 Sep 2019 in cs.DS

Abstract: We study the problem of testing whether a function f:Rn->R is linear (i.e., both additive and homogeneous) in the distribution-free property testing model, where the distance between functions is measured with respect to an unknown probability distribution over R. We show that, given query access to f, sampling access to the unknown distribution as well as the standard Gaussian, and eps>0, we can distinguish additive functions from functions that are eps-far from additive functions with O((1/eps)log(1/eps)) queries, independent of n. Furthermore, under the assumption that f is a continuous function, the additivity tester can be extended to a distribution-free tester for linearity using the same number of queries. On the other hand, we show that if we are only allowed to get values of f on sampled points, then any distribution-free tester requires Omega(n) samples, even if the underlying distribution is the standard Gaussian.

Citations (6)

Summary

We haven't generated a summary for this paper yet.