Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks (1909.03287v1)

Published 7 Sep 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: The paper discusses a pooling mechanism to induce subsampling in graph structured data and introduces it as a component of a graph convolutional neural network. The pooling mechanism builds on the Non-Negative Matrix Factorization (NMF) of a matrix representing node adjacency and node similarity as adaptively obtained through the vertices embedding learned by the model. Such mechanism is applied to obtain an incrementally coarser graph where nodes are adaptively pooled into communities based on the outcomes of the non-negative factorization. The empirical analysis on graph classification benchmarks shows how such coarsening process yields significant improvements in the predictive performance of the model with respect to its non-pooled counterpart.

Citations (25)

Summary

We haven't generated a summary for this paper yet.