Papers
Topics
Authors
Recent
2000 character limit reached

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators

Published 6 Sep 2019 in cs.DM, cs.AI, and math.CO | (1909.02789v1)

Abstract: Partitioning a graph using graph separators, and particularly clique separators, are well-known techniques to decompose a graph into smaller units which can be treated independently. It was previously known that the treewidth was bounded above by the sum of the size of the separator plus the treewidth of disjoint components, and this was obtained by the heuristic of filling in all edges of the separator making it into a clique. In this paper, we present a new, tighter upper bound on the treewidth of a graph obtained by only partially filling in the edges of a separator. In particular, the method completes just those pairs of separator vertices that are adjacent to a common component, and indicates a more effective heuristic than filling in the entire separator. We discuss the relevance of this result for combinatorial algorithms and give an example of how the tighter bound can be exploited in the domain of constraint satisfaction problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.