Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Oriented No-Reference Light Field Image Quality Assessment (1909.02358v2)

Published 5 Sep 2019 in eess.IV, cs.CV, and cs.MM

Abstract: Light field image (LFI) quality assessment is becoming more and more important, which helps to better guide the acquisition, processing and application of immersive media. However, due to the inherent high dimensional characteristics of LFI, the LFI quality assessment turns into a multi-dimensional problem that requires consideration of the quality degradation in both spatial and angular dimensions. Therefore, we propose a novel Tensor oriented No-reference Light Field image Quality evaluator (Tensor-NLFQ) based on tensor theory. Specifically, since the LFI is regarded as a low-rank 4D tensor, the principal components of four oriented sub-aperture view stacks are obtained via Tucker decomposition. Then, the Principal Component Spatial Characteristic (PCSC) is designed to measure the spatial-dimensional quality of LFI considering its global naturalness and local frequency properties. Finally, the Tensor Angular Variation Index (TAVI) is proposed to measure angular consistency quality by analyzing the structural similarity distribution between the first principal component and each view in the view stack. Extensive experimental results on four publicly available LFI quality databases demonstrate that the proposed Tensor-NLFQ model outperforms state-of-the-art 2D, 3D, multi-view, and LFI quality assessment algorithms.

Citations (73)

Summary

We haven't generated a summary for this paper yet.