Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new reproducing kernel based nonlinear dimension reduction method for survival data (1909.02243v1)

Published 5 Sep 2019 in math.ST, stat.ME, and stat.TH

Abstract: Based on the theories of sliced inverse regression (SIR) and reproducing kernel Hilbert space (RKHS), a new approach RDSIR (RKHS-based Double SIR) to nonlinear dimension reduction for survival data is proposed and discussed. An isometrically isomorphism is constructed based on RKHS property, then the nonlinear function in the RKHS can be represented by the inner product of two elements which reside in the isomorphic feature space. Due to the censorship of survival data, double slicing is used to estimate weight function or conditional survival function to adjust for the censoring bias. The sufficient dimension reduction (SDR) subspace is estimated by a generalized eigen-decomposition problem. Our method is computationally efficient with fast calculation speed and small computational burden. The asymptotic property and the convergence rate of the estimator are also discussed based on the perturbation theory. Finally, we illustrate the performance of RDSIR on simulated and real data to confirm that RDSIR is comparable with linear SDR method. The most important is that RDSIR can also extract nonlinearity in survival data effectively.

Summary

We haven't generated a summary for this paper yet.