Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-resolved Chromatic Mapping of Snapshot Mosaic Image Sensors via a Texture Sensitive Residual Network (1909.02221v1)

Published 5 Sep 2019 in eess.IV and cs.CV

Abstract: This paper introduces a novel method to simultaneously super-resolve and colour-predict images acquired by snapshot mosaic sensors. These sensors allow for spectral images to be acquired using low-power, small form factor, solid-state CMOS sensors that can operate at video frame rates without the need for complex optical setups. Despite their desirable traits, their main drawback stems from the fact that the spatial resolution of the imagery acquired by these sensors is low. Moreover, chromatic mapping in snapshot mosaic sensors is not straightforward since the bands delivered by the sensor tend to be narrow and unevenly distributed across the range in which they operate. We tackle this drawback as applied to chromatic mapping by using a residual channel attention network equipped with a texture sensitive block. Our method significantly outperforms the traditional approach of interpolating the image and, afterwards, applying a colour matching function. This work establishes state-of-the-art in this domain while also making available to the research community a dataset containing 296 registered stereo multi-spectral/RGB images pairs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.