Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Information Gradient flow (1909.02102v3)

Published 4 Sep 2019 in math.OC, cs.IT, math.IT, stat.CO, and stat.ML

Abstract: We present a framework for Nesterov's accelerated gradient flows in probability space to design efficient mean-field Markov chain Monte Carlo (MCMC) algorithms for Bayesian inverse problems. Here four examples of information metrics are considered, including Fisher-Rao metric, Wasserstein-2 metric, Kalman-Wasserstein metric and Stein metric. For both Fisher-Rao and Wasserstein-2 metrics, we prove convergence properties of accelerated gradient flows. In implementations, we propose a sampling-efficient discrete-time algorithm for Wasserstein-2, Kalman-Wasserstein and Stein accelerated gradient flows with a restart technique. We also formulate a kernel bandwidth selection method, which learns the gradient of logarithm of density from Brownian-motion samples. Numerical experiments, including Bayesian logistic regression and Bayesian neural network, show the strength of the proposed methods compared with state-of-the-art algorithms.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com