Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accelerated Information Gradient flow

Published 4 Sep 2019 in math.OC, cs.IT, math.IT, stat.CO, and stat.ML | (1909.02102v3)

Abstract: We present a framework for Nesterov's accelerated gradient flows in probability space to design efficient mean-field Markov chain Monte Carlo (MCMC) algorithms for Bayesian inverse problems. Here four examples of information metrics are considered, including Fisher-Rao metric, Wasserstein-2 metric, Kalman-Wasserstein metric and Stein metric. For both Fisher-Rao and Wasserstein-2 metrics, we prove convergence properties of accelerated gradient flows. In implementations, we propose a sampling-efficient discrete-time algorithm for Wasserstein-2, Kalman-Wasserstein and Stein accelerated gradient flows with a restart technique. We also formulate a kernel bandwidth selection method, which learns the gradient of logarithm of density from Brownian-motion samples. Numerical experiments, including Bayesian logistic regression and Bayesian neural network, show the strength of the proposed methods compared with state-of-the-art algorithms.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.