Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The spectral properties of Vandermonde matrices with clustered nodes (1909.01927v2)

Published 4 Sep 2019 in math.NA and cs.NA

Abstract: We study rectangular Vandermonde matrices $\mathbf{V}$ with $N+1$ rows and $s$ irregularly spaced nodes on the unit circle, in cases where some of the nodes are "clustered" together -- the elements inside each cluster being separated by at most $h \lesssim {1\over N}$, and the clusters being separated from each other by at least $\theta \gtrsim {1\over N}$. We show that any pair of column subspaces corresponding to two different clusters are nearly orthogonal: the minimal principal angle between them is at most $$\frac{\pi}{2}-\frac{c_1}{N \theta}-c_2 N h,$$ for some constants $c_1,c_2$ depending only on the multiplicities of theclusters. As a result, spectral analysis of $\mathbf{V}_N$ is significantly simplified by reducing the problem to the analysis of each cluster individually. Consequently we derive accurate estimates for 1) all the singular values of $\mathbf{V}$, and 2) componentwise condition numbers for the linear least squares problem. Importantly, these estimates are exponential only in the local cluster multiplicities, while changing at most linearly with $s$.

Citations (20)

Summary

We haven't generated a summary for this paper yet.