Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the geometry of K3 surfaces with finite automorphism group and no elliptic fibrations (1909.01909v5)

Published 4 Sep 2019 in math.AG

Abstract: Nikulin and Vinberg proved that there are only a finite number of lattices of rank $\geq 3$ that are the N\'eron-Severi group of projective K3 surfaces with a finite automorphism group. The aim of this paper is to provide a more geometric description of such K3 surfaces $X$, when these surfaces have moreover no elliptic fibrations. In that case we show that such K3 surface is either a quartic with special hyperplane sections or a double cover of the plane branched over a smooth sextic curve which has special tangencies properties with some lines, conics or cuspidal cubic curves. We then study the converse i.e. if the geometric description we obtained characterizes these surfaces. In $4$ cases the description is sufficient, in each of the $4$ other cases there is exactly another one possibility which we study. We obtain that at least 5 moduli spaces of K3 surfaces (among the 8 we study) are unirational.

Summary

We haven't generated a summary for this paper yet.