Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multi-fidelity neural network surrogate sampling method for uncertainty quantification (1909.01859v2)

Published 28 Aug 2019 in math.NA, cs.NA, and physics.comp-ph

Abstract: We propose a multi-fidelity neural network surrogate sampling method for the uncertainty quantification of physical/biological systems described by ordinary or partial differential equations. We first generate a set of low/high-fidelity data by low/high-fidelity computational models, e.g. using coarser/finer discretizations of the governing differential equations. We then construct a two-level neural network, where a large set of low-fidelity data are utilized in order to accelerate the construction of a high-fidelity surrogate model with a small set of high-fidelity data. We then embed the constructed high-fidelity surrogate model in the framework of Monte Carlo sampling. The proposed algorithm combines the approximation power of neural networks with the advantages of Monte Carlo sampling within a multi-fidelity framework. We present two numerical examples to demonstrate the accuracy and efficiency of the proposed method. We show that dramatic savings in computational cost may be achieved when the output predictions are desired to be accurate within small tolerances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mohammad Motamed (13 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.