Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Segmentation of Panoramic Images Using a Synthetic Dataset (1909.00532v1)

Published 2 Sep 2019 in cs.CV and eess.IV

Abstract: Panoramic images have advantages in information capacity and scene stability due to their large field of view (FoV). In this paper, we propose a method to synthesize a new dataset of panoramic image. We managed to stitch the images taken from different directions into panoramic images, together with their labeled images, to yield the panoramic semantic segmentation dataset denominated as SYNTHIA-PANO. For the purpose of finding out the effect of using panoramic images as training dataset, we designed and performed a comprehensive set of experiments. Experimental results show that using panoramic images as training data is beneficial to the segmentation result. In addition, it has been shown that by using panoramic images with a 180 degree FoV as training data the model has better performance. Furthermore, the model trained with panoramic images also has a better capacity to resist the image distortion.

Citations (33)

Summary

We haven't generated a summary for this paper yet.