Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations (1909.00491v2)

Published 1 Sep 2019 in math.NA, cs.NA, and math.AP

Abstract: We propose a least-squares method involving the recovery of the gradient and possibly the Hessian for elliptic equation in nondivergence form. As our approach is based on the Lax--Milgram theorem with the curl-free constraint built into the target (or cost) functional, the discrete spaces require no inf-sup stabilization. We show that standard conforming finite elements can be used yielding apriori and aposteriori convergnece results. We illustrate our findings with numerical experiments with uniform or adaptive mesh refinement.

Citations (6)

Summary

We haven't generated a summary for this paper yet.