Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular Nonsymmetric Macdonald Polynomials and Quasistaircases (1909.00071v2)

Published 30 Aug 2019 in math.RT and math.CA

Abstract: Singular nonsymmetric Macdonald polynomials are constructed by use of the representation theory of the Hecke algebras of the symmetric groups. These polynomials are labeled by quasistaircase partitions and are associated to special parameter values $(q,t)$. For $N$ variables, there are singular polynomials for any pair of positive integers $m$ and $n$, with $2\leq n\leq N$, and parameters values $(q,t)$ satisfying $q{a}t{b}=1$ exactly when $a=rm$ and $b=rn$, for some integer $r$. The coefficients of nonsymmetric Macdonald polynomials with respect to the basis of monomials $\big{ x{\alpha}\big}$ are rational functions of $q$ and $t$. In this paper, we present the construction of subspaces of singular nonsymmetric Macdonald polynomials specialized to particular values of $(q,t)$. The key part of this construction is to show the coefficients have no poles at the special values of $(q,t)$. Moreover, this subspace of singular Macdonald polynomials for the special values of the parameters is an irreducible module for the Hecke algebra of type $A_{N-1}$.

Summary

We haven't generated a summary for this paper yet.