Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dialog Intent Induction with Deep Multi-View Clustering (1908.11487v2)

Published 30 Aug 2019 in cs.CL

Abstract: We introduce the dialog intent induction task and present a novel deep multi-view clustering approach to tackle the problem. Dialog intent induction aims at discovering user intents from user query utterances in human-human conversations such as dialogs between customer support agents and customers. Motivated by the intuition that a dialog intent is not only expressed in the user query utterance but also captured in the rest of the dialog, we split a conversation into two independent views and exploit multi-view clustering techniques for inducing the dialog intent. In particular, we propose alternating-view k-means (AV-KMEANS) for joint multi-view representation learning and clustering analysis. The key innovation is that the instance-view representations are updated iteratively by predicting the cluster assignment obtained from the alternative view, so that the multi-view representations of the instances lead to similar cluster assignments. Experiments on two public datasets show that AV-KMEANS can induce better dialog intent clusters than state-of-the-art unsupervised representation learning methods and standard multi-view clustering approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hugh Perkins (7 papers)
  2. Yi Yang (855 papers)
Citations (31)