Papers
Topics
Authors
Recent
2000 character limit reached

Noether-type theorem for fractional variational problems depending on fractional derivatives of functions

Published 29 Aug 2019 in math.OC, math-ph, math.DS, math.MP, and physics.class-ph | (1908.11414v1)

Abstract: In the present work, by taking advantage of a so-called practical limitation of fractional derivatives, namely, the absence of a simple chain and Leibniz's rules, we proposed a generalized fractional calculus of variation where the Lagrangian function depends on fractional derivatives of differentiable functions. The Euler-Lagrange equation we obtained generalizes previously results and enables us to construct simple Lagrangians for nonlinear systems. Furthermore, in our main result, we formulate a Noether-type theorem for these problems that provides us with a means to obtain conservative quantities for nonlinear systems. In order to illustrate the potential of the applications of our results, we obtain Lagrangians for some nonlinear chaotic dynamical systems, and we analyze the conservation laws related to time translations and internal symmetries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.