Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compacted binary trees admit a stretched exponential (1908.11181v3)

Published 29 Aug 2019 in math.CO, cs.DM, and cs.DS

Abstract: A compacted binary tree is a directed acyclic graph encoding a binary tree in which common subtrees are factored and shared, such that they are represented only once. We show that the number of compacted binary trees of size $n$ grows asymptotically like $$\Theta\left( n! \, 4n e{3a_1n{1/3}} n{3/4} \right),$$ where $a_1\approx-2.338$ is the largest root of the Airy function. Our method involves a new two parameter recurrence which yields an algorithm of quadratic arithmetic complexity. We use empirical methods to estimate the values of all terms defined by the recurrence, then we prove by induction that these estimates are sufficiently accurate for large $n$ to determine the asymptotic form. Our results also lead to new bounds on the number of minimal finite automata recognizing a finite language on a binary alphabet. As a consequence, these also exhibit a stretched exponential.

Citations (10)

Summary

We haven't generated a summary for this paper yet.