Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Discounted Stochastic Two-Player Games with Near-Optimal Time and Sample Complexity (1908.11071v1)

Published 29 Aug 2019 in cs.LG, cs.DS, and stat.ML

Abstract: In this paper, we settle the sampling complexity of solving discounted two-player turn-based zero-sum stochastic games up to polylogarithmic factors. Given a stochastic game with discount factor $\gamma\in(0,1)$ we provide an algorithm that computes an $\epsilon$-optimal strategy with high-probability given $\tilde{O}((1 - \gamma){-3} \epsilon{-2})$ samples from the transition function for each state-action-pair. Our algorithm runs in time nearly linear in the number of samples and uses space nearly linear in the number of state-action pairs. As stochastic games generalize Markov decision processes (MDPs) our runtime and sample complexities are optimal due to Azar et al (2013). We achieve our results by showing how to generalize a near-optimal Q-learning based algorithms for MDP, in particular Sidford et al (2018), to two-player strategy computation algorithms. This overcomes limitations of standard Q-learning and strategy iteration or alternating minimization based approaches and we hope will pave the way for future reinforcement learning results by facilitating the extension of MDP results to multi-agent settings with little loss.

Citations (69)

Summary

We haven't generated a summary for this paper yet.