Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method for Dimensionally Adaptive Sparse Trigonometric Interpolation of Periodic Functions (1908.10672v2)

Published 28 Aug 2019 in math.NA and cs.NA

Abstract: We present a method for dimensionally adaptive sparse trigonometric interpolation of multidimensional periodic functions belonging to a smoothness class of finite order. This method targets applications where periodicity must be preserved and the precise anisotropy is not known a priori. To the authors' knowledge, this is the first instance of a dimensionally adaptive sparse interpolation algorithm that uses a trigonometric interpolation basis. The motivating application behind this work is the adaptive approximation of a multi-input model for a molecular potential energy surface (PES) where each input represents an angle of rotation. Our method is based on an anisotropic quasi-optimal estimate for the decay rate of the Fourier coefficients of the model; a least-squares fit to the coefficients of the interpolant is used to estimate the anisotropy. Thus, our adaptive approximation strategy begins with a coarse isotropic interpolant, which is gradually refined using the estimated anisotropic rates. The procedure takes several iterations where ever-more accurate interpolants are used to generate ever-improving anisotropy rates. We present several numerical examples of our algorithm where the adaptive procedure successfully recovers the theoretical "best" convergence rate, including an application to a periodic PES approximation. An open-source implementation of our algorithm resides in the Tasmanian UQ library developed at Oak Ridge National Laboratory.

Citations (9)

Summary

We haven't generated a summary for this paper yet.