Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On power residues modulo a prime (1908.10536v2)

Published 28 Aug 2019 in math.NT

Abstract: Let $p$ be a sufficiently large prime number, $n$ be a positive odd integer with $n|\,p-1$ and $n>p\varepsilon $, where $\varepsilon$ is a sufficiently small constant. Let $k(p,\,n)$ denote the least positive integer $k$ such that for $x=-k,\,\dots,\,-1,\,1,\,2,\,\dots,\,k$, the numbers $xn\pmod p$ yield all the non-zero $n$-th power residues modulo $p$. In this paper, we shall prove $$ k(p,\,n)=O(p{1-\delta}), $$ which improves a result of S. Chowla and H. London in the case of large $n$.

Summary

We haven't generated a summary for this paper yet.