Papers
Topics
Authors
Recent
2000 character limit reached

Unified web for expansions of amplitudes

Published 27 Aug 2019 in hep-th | (1908.10272v1)

Abstract: In this paper, we demonstrate that using differential operators one can construct the complete unified web for expansions of amplitudes for a wide range of theories. We first re-derive the expansion of multi-trace Einstein-Yang-Mills amplitudes to Kleiss-Kuijf basis of color-ordered Yang-Mills amplitudes, by applying proper differential operators which modify the coefficients in the recursive expansion of single-trace Einstein-Yang-Mills amplitudes. Next, through differential operators which act on amplitudes only, we obtain expansions of amplitudes of Yang-Mills theory, Yang-Mills-scalar theory, $\phi4$ theory, non-linear sigma model, bi-adjoint scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory and special Galileon theory. Then, together with other results in literatures, the complete unified web is achieved. This web for expansions is the dual version of the unified web for differential operators. Thus, connections among amplitudes of a variety of theories, which are reflected by Cachazo-He-Yuan integrands and differential operators previously, can also be represented by expansions. We also find that amplitudes of all theories in the web can be expanded to double color-ordered bi-adjoint scalar amplitudes in the universal double copy formula.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.