Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Based Video Game Development in MLP@UoM: An Overview (1908.10127v1)

Published 27 Aug 2019 in cs.AI, cs.HC, and cs.LG

Abstract: In general, video games not only prevail in entertainment but also have become an alternative methodology for knowledge learning, skill acquisition and assistance for medical treatment as well as health care in education, vocational/military training and medicine. On the other hand, video games also provide an ideal test bed for AI researches. To a large extent, however, video game development is still a laborious yet costly process, and there are many technical challenges ranging from game generation to intelligent agent creation. Unlike traditional methodologies, in Machine Learning and Perception Lab at the University of Manchester (MLP@UoM), we advocate applying machine learning to different tasks in video game development to address several challenges systematically. In this paper, we overview the main progress made in MLP@UoM recently and have an outlook on the future research directions in learning-based video game development arising from our works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.