Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complementary-Similarity Learning using Quadruplet Network (1908.09928v2)

Published 26 Aug 2019 in cs.LG, cs.IR, and stat.ML

Abstract: We propose a novel learning framework to answer questions such as "if a user is purchasing a shirt, what other items will (s)he need with the shirt?" Our framework learns distributed representations for items from available textual data, with the learned representations representing items in a latent space expressing functional complementarity as well similarity. In particular, our framework places functionally similar items close together in the latent space, while also placing complementary items closer than non-complementary items, but farther away than similar items. In this study, we introduce a new dataset of similar, complementary, and negative items derived from the Amazon co-purchase dataset. For evaluation purposes, we focus our approach on clothing and fashion verticals. As per our knowledge, this is the first attempt to learn similar and complementary relationships simultaneously through just textual title metadata. Our framework is applicable across a broad set of items in the product catalog and can generate quality complementary item recommendations at scale.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mansi Ranjit Mane (3 papers)
  2. Stephen Guo (15 papers)
  3. Kannan Achan (45 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.