Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of CNN and Classic Features for Image Retrieval (1908.09300v1)

Published 25 Aug 2019 in cs.CV

Abstract: Feature detectors and descriptors have been successfully used for various computer vision tasks, such as video object tracking and content-based image retrieval. Many methods use image gradients in different stages of the detection-description pipeline to describe local image structures. Recently, some, or all, of these stages have been replaced by convolutional neural networks (CNNs), in order to increase their performance. A detector is defined as a selection problem, which makes it more challenging to implement as a CNN. They are therefore generally defined as regressors, converting input images to score maps and keypoints can be selected with non-maximum suppression. This paper discusses and compares several recent methods that use CNNs for keypoint detection. Experiments are performed both on the CNN based approaches, as well as a selection of conventional methods. In addition to qualitative measures defined on keypoints and descriptors, the bag-of-words (BoW) model is used to implement an image retrieval application, in order to determine how the methods perform in practice. The results show that each type of features are best in different contexts.

Citations (14)

Summary

We haven't generated a summary for this paper yet.