Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well (1908.09153v2)

Published 24 Aug 2019 in math.AP

Abstract: This article concerns the existence of multi-bump positive solutions for the following logarithmic Schr\"{o}dinger equation $$ \left{ \begin{array}{lc} -\Delta u+ \lambda V(x)u=u \log u2, & \mbox{in} \quad \mathbb{R}{N}, \ u \in H1(\mathbb{R}{N}), \ \end{array} \right. $$ where $N \geq 1$, $\lambda>0$ is a parameter and the nonnegative continuous function $V: \mathbb{R}{N}\rightarrow \mathbb{R}$ has a potential well $\Omega: =\text{int}\, V{-1}(0)$ which possesses $k$ disjoint bounded components $\Omega=\bigcup_{j=1}{k}\Omega_{j}$. Using the variational methods, we prove that if the parameter $\lambda>0$ is large enough, then the equation has at least $2{k}-1$ multi-bump positive solutions.

Summary

We haven't generated a summary for this paper yet.