Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KLDivNet: An unsupervised neural network for multi-modality image registration (1908.08767v2)

Published 23 Aug 2019 in cs.CV

Abstract: Multi-modality image registration is one of the most underlined processes in medical image analysis. Recently, convolutional neural networks (CNNs) have shown significant potential in deformable registration. However, the lack of voxel-wise ground truth challenges the training of CNNs for an accurate registration. In this work, we propose a cross-modality similarity metric, based on the KL-divergence of image variables, and implement an efficient estimation method using a CNN. This estimation network, referred to as KLDivNet, can be trained unsupervisedly. We then embed the KLDivNet into a registration network to achieve the unsupervised deformable registration for multi-modality images. We employed three datasets, i.e., AAL Brain, LiTS Liver and Hospital Liver, with both the intra- and inter-modality image registration tasks for validation. Results showed that our similarity metric was effective, and the proposed registration network delivered superior performance compared to the state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.