Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Consistent Hashing with Bounded Loads (1908.08762v2)

Published 23 Aug 2019 in cs.DS

Abstract: Dynamic load balancing lies at the heart of distributed caching. Here, the goal is to assign objects (load) to servers (computing nodes) in a way that provides load balancing while at the same time dynamically adjusts to the addition or removal of servers. One essential requirement is that the addition or removal of small servers should not require us to recompute the complete assignment. A popular and widely adopted solution is the two-decade-old Consistent Hashing (CH). Recently, an elegant extension was provided to account for server bounds. In this paper, we identify that existing methodologies for CH and its variants suffer from cascaded overflow, leading to poor load balancing. This cascading effect leads to decreasing performance of the hashing procedure with increasing load. To overcome the cascading effect, we propose a simple solution to CH based on recent advances in fast minwise hashing. We show, both theoretically and empirically, that our proposed solution is significantly superior for load balancing and is optimal in many senses. On the AOL search dataset and Indiana University Clicks dataset with real user activity, our proposed solution reduces cache misses by several magnitudes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.