Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the cohomology of line bundles over certain flag schemes II (1908.08432v4)

Published 22 Aug 2019 in math.RT and math.CO

Abstract: Over a field $K$ of characteristic $p$, let $Z$ be the incidence variety in $\mathbb{P}d \times (\mathbb{P}d)*$ and let $\mathcal{L}$ be the restriction to $Z$ of the line bundle $\mathcal{O}(-n-d) \boxtimes \mathcal{O}(n)$, where $n = p+f$ with $0 \leq f \leq p-2$. We prove that $Hd(Z,\mathcal{L})$ is the simple $\operatorname{GL}{d+1}$-module corresponding to the partition $\lambda_0 = (p-1+f,p-1,f+1)$. When $f= 0$, using the first author's description of $Hd(Z,\mathcal{L})$ and Jantzen's sum formula, we obtain as a by-product that the sum of the monomial symmetric functions $m\lambda$, for all partitions $\lambda$ of $2p-1$ less than $(p-1,p-1,1)$ in the dominance order, is the alternating sum of the Schur functions $S_{p-1,p-1-i,1{i+1}}$ for $i=0,\dots,p-2$.

Summary

We haven't generated a summary for this paper yet.