Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Neighbourhood Aggregation: Predicting Future Links in Temporal Graphs via Recurrent Variational Graph Convolutions (1908.08402v2)

Published 21 Aug 2019 in cs.SI

Abstract: Graphs have become a crucial way to represent large, complex and often temporal datasets across a wide range of scientific disciplines. However, when graphs are used as input to machine learning models, this rich temporal information is frequently disregarded during the learning process, resulting in suboptimal performance on certain temporal infernce tasks. To combat this, we introduce Temporal Neighbourhood Aggregation (TNA), a novel vertex representation model architecture designed to capture both topological and temporal information to directly predict future graph states. Our model exploits hierarchical recurrence at different depths within the graph to enable exploration of changes in temporal neighbourhoods, whilst requiring no additional features or labels to be present. The final vertex representations are created using variational sampling and are optimised to directly predict the next graph in the sequence. Our claims are reinforced by extensive experimental evaluation on both real and synthetic benchmark datasets, where our approach demonstrates superior performance compared to competing methods, out-performing them at predicting new temporal edges by as much as 23% on real-world datasets, whilst also requiring fewer overall model parameters.

Citations (19)

Summary

We haven't generated a summary for this paper yet.