Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seismic tomography using variational inference methods (1908.08356v2)

Published 22 Aug 2019 in physics.geo-ph and physics.comp-ph

Abstract: Seismic tomography is a methodology to image the interior of solid or fluid media, and is often used to map properties in the subsurface of the Earth. In order to better interpret the resulting images it is important to assess imaging uncertainties. Since tomography is significantly nonlinear, Monte Carlo sampling methods are often used for this purpose, but they are generally computationally intractable for large datasets and high-dimensional parameter spaces. To extend uncertainty analysis to larger systems we use variational inference methods to conduct seismic tomography. In contrast to Monte Carlo sampling, variational methods solve the Bayesian inference problem as an optimization problem, yet still provide probabilistic results. In this study, we applied two variational methods, automatic differential variational inference (ADVI) and Stein variational gradient descent (SVGD), to 2D seismic tomography problems using both synthetic and real data and we compare the results to those from two different Monte Carlo sampling methods. The results show that variational inference methods can produce accurate approximations to the results of Monte Carlo sampling methods at significantly lower computational cost, provided that gradients of parameters with respect to data can be calculated efficiently. We expect that the methods can be applied fruitfully to many other types of geophysical inverse problems.

Summary

We haven't generated a summary for this paper yet.