Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Image Deconvolution using Pretrained Generative Priors (1908.07404v1)

Published 20 Aug 2019 in cs.CV

Abstract: This paper proposes a novel approach to regularize the ill-posed blind image deconvolution (blind image deblurring) problem using deep generative networks. We employ two separate deep generative models - one trained to produce sharp images while the other trained to generate blur kernels from lower dimensional parameters. To deblur, we propose an alternating gradient descent scheme operating in the latent lower-dimensional space of each of the pretrained generative models. Our experiments show excellent deblurring results even under large blurs and heavy noise. To improve the performance on rich image datasets not well learned by the generative networks, we present a modification of the proposed scheme that governs the deblurring process under both generative and classical priors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Asim (15 papers)
  2. Fahad Shamshad (21 papers)
  3. Ali Ahmed (24 papers)
Citations (7)