Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Approach for Solving The Clustered Shortest-Path Tree Problem Based on Reducing The Search Space of Evolutionary Algorithm (1908.07060v1)

Published 10 Jun 2019 in cs.NE

Abstract: Along with the development of manufacture and services, the problem of distribution network optimization has been growing in importance, thus receiving much attention from the research community. One of the most recently introduced network optimization problems is the Clustered Shortest-Path Tree Problem (CluSTP). Since the problem is NP-Hard, recent approaches often prefer to use approximation algorithms to solve it, several of which used Evolutionary Algorithms (EAs) and have been proven to be effective. However, most of the prior studies directly applied EAs to the whole CluSTP problem, which leads to a great amount of resource consumption, especially when the problem size is large. To overcome these limitations, this paper suggests a method for reducing the search space of the EAs applied to CluSTP by decomposing the original problem into two sub-problems, the solution to one of which is found by an EAs and that to the other is found by another method. The goal of the first sub-problem is to determine a spanning tree which connects among the clusters, while the goal of the second sub-problem is to determine the best spanning tree for each cluster. In addition, this paper proposes a new EAs, which can be applied to solve the first sub-problem and suggests using the Dijkstra's algorithm to solve the second sub-problem. The proposed approach is comprehensively experimented and compared with existing methods. Experimental results prove that our method is more efficient and more importantly, it can obtain results which are close to the optimal results.

Citations (36)

Summary

We haven't generated a summary for this paper yet.