Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normal operators with highly incompatible off-diagonal corners (1908.07024v1)

Published 19 Aug 2019 in math.FA

Abstract: Let $\mathcal{H}$ be a complex, separable Hilbert space, and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators on $\mathcal{H}$. Given an orthogonal projection $P \in \mathcal{B}(\mathcal{H})$ and an operator $D \in \mathcal{B}(\mathcal{H})$, we may write $D=\begin{bmatrix} D_1& D_2 D_3 & D_4 \end{bmatrix}$ relative to the decomposition $\mathcal{H} = \mathrm{ran}\, P \oplus \mathrm{ran}\, (I-P)$. In this paper we study the question: for which non-negative integers $j, k$ can we find a normal operator $D$ and an orthogonal projection $P$ such that $\mathrm{rank}\, D_2 = j$ and $\mathrm{rank}\, D_3 = k$? Complete results are obtained in the case where $\mathrm{dim}\, \mathcal{H} < \infty$, and partial results are obtained in the infinite-dimensional setting.

Summary

We haven't generated a summary for this paper yet.