Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Embedding of 3D Scan and CAD Objects (1908.06989v1)

Published 19 Aug 2019 in cs.CV

Abstract: 3D scan geometry and CAD models often contain complementary information towards understanding environments, which could be leveraged through establishing a mapping between the two domains. However, this is a challenging task due to strong, lower-level differences between scan and CAD geometry. We propose a novel approach to learn a joint embedding space between scan and CAD geometry, where semantically similar objects from both domains lie close together. To achieve this, we introduce a new 3D CNN-based approach to learn a joint embedding space representing object similarities across these domains. To learn a shared space where scan objects and CAD models can interlace, we propose a stacked hourglass approach to separate foreground and background from a scan object, and transform it to a complete, CAD-like representation to produce a shared embedding space. This embedding space can then be used for CAD model retrieval; to further enable this task, we introduce a new dataset of ranked scan-CAD similarity annotations, enabling new, fine-grained evaluation of CAD model retrieval to cluttered, noisy, partial scans. Our learned joint embedding outperforms current state of the art for CAD model retrieval by 12% in instance retrieval accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Manuel Dahnert (5 papers)
  2. Angela Dai (84 papers)
  3. Leonidas Guibas (177 papers)
  4. Matthias Nießner (177 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.