Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PrivFT: Private and Fast Text Classification with Homomorphic Encryption (1908.06972v2)

Published 19 Aug 2019 in cs.CR and cs.LG

Abstract: The need for privacy-preserving analytics is higher than ever due to the severity of privacy risks and to comply with new privacy regulations leading to an amplified interest in privacy-preserving techniques that try to balance between privacy and utility. In this work, we present an efficient method for Text Classification while preserving the privacy of the content using Fully Homomorphic Encryption (FHE). Our system (named \textbf{Priv}ate \textbf{F}ast \textbf{T}ext (PrivFT)) performs two tasks: 1) making inference of encrypted user inputs using a plaintext model and 2) training an effective model using an encrypted dataset. For inference, we train a supervised model and outline a system for homomorphic inference on encrypted user inputs with zero loss to prediction accuracy. In the second part, we show how to train a model using fully encrypted data to generate an encrypted model. We provide a GPU implementation of the Cheon-Kim-Kim-Song (CKKS) FHE scheme and compare it with existing CPU implementations to achieve 1 to 2 orders of magnitude speedup at various parameter settings. We implement PrivFT in GPUs to achieve a run time per inference of less than 0.66 seconds. Training on a relatively large encrypted dataset is more computationally intensive requiring 5.04 days.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ahmad Al Badawi (7 papers)
  2. Luong Hoang (4 papers)
  3. Chan Fook Mun (3 papers)
  4. Kim Laine (13 papers)
  5. Khin Mi Mi Aung (9 papers)
Citations (74)

Summary

We haven't generated a summary for this paper yet.