Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reproducible Analysis of RSSI Fingerprinting for Outdoor Localization Using Sigfox: Preprocessing and Hyperparameter Tuning (1908.06851v1)

Published 14 Aug 2019 in eess.SP, cs.LG, and stat.ML

Abstract: Fingerprinting techniques, which are a common method for indoor localization, have been recently applied with success into outdoor settings. Particularly, the communication signals of Low Power Wide Area Networks (LPWAN) such as Sigfox, have been used for localization. In this rather recent field of study, not many publicly available datasets, which would facilitate the consistent comparison of different positioning systems, exist so far. In the current study, a published dataset of RSSI measurements on a Sigfox network deployed in Antwerp, Belgium is used to analyse the appropriate selection of preprocessing steps and to tune the hyperparameters of a kNN fingerprinting method. Initially, the tuning of hyperparameter k for a variety of distance metrics, and the selection of efficient data transformation schemes, proposed by relevant works, is presented. In addition, accuracy improvements are achieved in this study, by a detailed examination of the appropriate adjustment of the parameters of the data transformation schemes tested, and of the handling of out of range values. With the appropriate tuning of these factors, the achieved mean localization error was 298 meters, and the median error was 109 meters. To facilitate the reproducibility of tests and comparability of results, the code and train/validation/test split used in this study are available.

Citations (26)

Summary

We haven't generated a summary for this paper yet.