Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Deep Learning Models via Synthetic Data: Application in Unmanned Aerial Vehicles (1908.06472v1)

Published 18 Aug 2019 in cs.CV, cs.LG, and eess.IV

Abstract: This paper describes preliminary work in the recent promising approach of generating synthetic training data for facilitating the learning procedure of deep learning (DL) models, with a focus on aerial photos produced by unmanned aerial vehicles (UAV). The general concept and methodology are described, and preliminary results are presented, based on a classification problem of fire identification in forests as well as a counting problem of estimating number of houses in urban areas. The proposed technique constitutes a new possibility for the DL community, especially related to UAV-based imagery analysis, with much potential, promising results, and unexplored ground for further research.

Citations (15)

Summary

We haven't generated a summary for this paper yet.