Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

eSports Pro-Players Behavior During the Game Events: Statistical Analysis of Data Obtained Using the Smart Chair (1908.06402v1)

Published 18 Aug 2019 in cs.HC, cs.AI, and cs.CY

Abstract: Today's competition between the professional eSports teams is so strong that in-depth analysis of players' performance literally crucial for creating a powerful team. There are two main approaches to such an estimation: obtaining features and metrics directly from the in-game data or collecting detailed information about the player including data on his/her physical training. While the correlation between the player's skill and in-game data has already been covered in many papers, there are very few works related to analysis of eSports athlete's skill through his/her physical behavior. We propose the smart chair platform which is to collect data on the person's behavior on the chair using an integrated accelerometer, a gyroscope and a magnetometer. We extract the important game events to define the players' physical reactions to them. The obtained data are used for training machine learning models in order to distinguish between the low-skilled and high-skilled players. We extract and figure out the key features during the game and discuss the results.

Citations (10)

Summary

We haven't generated a summary for this paper yet.