Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Multi-Task MRI Reconstruction: Joint Reconstruction, Registration and Super-Resolution (1908.05911v1)

Published 16 Aug 2019 in eess.IV, cs.NA, and math.NA

Abstract: Motion degradation is a central problem in Magnetic Resonance Imaging (MRI). This work addresses the problem of how to obtain higher quality, super-resolved motion-free, reconstructions from highly undersampled MRI data. In this work, we present for the first time a variational multi-task framework that allows joining three relevant tasks in MRI: reconstruction, registration and super-resolution. Our framework takes a set of multiple undersampled MR acquisitions corrupted by motion into a novel multi-task optimisation model, which is composed of an $L2$ fidelity term that allows sharing representation between tasks, super-resolution foundations and hyperelastic deformations to model biological tissue behaviors. We demonstrate that this combination yields to significant improvements over sequential models and other bi-task methods. Our results exhibit fine details and compensate for motion producing sharp and highly textured images compared to state of the art methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.