Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards multi-sequence MR image recovery from undersampled k-space data (1908.05615v2)

Published 15 Aug 2019 in eess.IV and cs.CV

Abstract: Undersampled MR image recovery has been widely studied for accelerated MR acquisition. However, it has been mostly studied under a single sequence scenario, despite the fact that multi-sequence MR scan is common in practice. In this paper, we aim to optimize multi-sequence MR image recovery from undersampled k-space data under an overall time constraint while considering the difference in acquisition time for various sequences. We first formulate it as a constrained optimization problem and then show that finding the optimal sampling strategy for all sequences and the best recovery model at the same time is combinatorial and hence computationally prohibitive. To solve this problem, we propose a blind recovery model that simultaneously recovers multiple sequences, and an efficient approach to find proper combination of sampling strategy and recovery model. Our experiments demonstrate that the proposed method outperforms sequence-wise recovery, and sheds light on how to decide the undersampling strategy for sequences within an overall time budget.

Citations (8)

Summary

We haven't generated a summary for this paper yet.