Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the behaviour of the Douglas-Rachford algorithm for minimizing a convex function subject to a linear constraint (1908.05406v2)

Published 15 Aug 2019 in math.OC

Abstract: The Douglas-Rachford algorithm (DRA) is a powerful optimization method for minimizing the sum of two convex (not necessarily smooth) functions. The vast majority of previous research dealt with the case when the sum has at least one minimizer. In the absence of minimizers, it was recently shown that for the case of two indicator functions, the DRA converges to a best approximation solution. In this paper, we present a new convergence result on the the DRA applied to the problem of minimizing a convex function subject to a linear constraint. Indeed, a normal solution may be found even when the domain of the objective function and the linear subspace constraint have no point in common. As an important application, a new parallel splitting result is provided. We also illustrate our results through various examples.

Summary

We haven't generated a summary for this paper yet.