Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiview-Consistent Semi-Supervised Learning for 3D Human Pose Estimation (1908.05293v3)

Published 14 Aug 2019 in cs.CV

Abstract: The best performing methods for 3D human pose estimation from monocular images require large amounts of in-the-wild 2D and controlled 3D pose annotated datasets which are costly and require sophisticated systems to acquire. To reduce this annotation dependency, we propose Multiview-Consistent Semi Supervised Learning (MCSS) framework that utilizes similarity in pose information from unannotated, uncalibrated but synchronized multi-view videos of human motions as additional weak supervision signal to guide 3D human pose regression. Our framework applies hard-negative mining based on temporal relations in multi-view videos to arrive at a multi-view consistent pose embedding. When jointly trained with limited 3D pose annotations, our approach improves the baseline by 25% and state-of-the-art by 8.7%, whilst using substantially smaller networks. Lastly, but importantly, we demonstrate the advantages of the learned embedding and establish view-invariant pose retrieval benchmarks on two popular, publicly available multi-view human pose datasets, Human 3.6M and MPI-INF-3DHP, to facilitate future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rahul Mitra (8 papers)
  2. Nitesh B. Gundavarapu (6 papers)
  3. Abhishek Sharma (112 papers)
  4. Arjun Jain (18 papers)
Citations (56)

Summary

We haven't generated a summary for this paper yet.