Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Diverse and Accurate Image Captions via Reinforcing Determinantal Point Process (1908.04919v1)

Published 14 Aug 2019 in cs.CV and cs.CL

Abstract: Although significant progress has been made in the field of automatic image captioning, it is still a challenging task. Previous works normally pay much attention to improving the quality of the generated captions but ignore the diversity of captions. In this paper, we combine determinantal point process (DPP) and reinforcement learning (RL) and propose a novel reinforcing DPP (R-DPP) approach to generate a set of captions with high quality and diversity for an image. We show that R-DPP performs better on accuracy and diversity than using noise as a control signal (GANs, VAEs). Moreover, R-DPP is able to preserve the modes of the learned distribution. Hence, beam search algorithm can be applied to generate a single accurate caption, which performs better than other RL-based models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Qingzhong Wang (26 papers)
  2. Antoni B. Chan (64 papers)
Citations (6)