Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gevrey class semigroup, exponential decay and Lack of analyticity for a system formed by a Kirchhoff-Love plate equation and the equation of a membrane-like electric network with indirect fractional damping (1908.04826v3)

Published 13 Aug 2019 in math.AP

Abstract: The emphasis in this paper is on the Coupled System of a Kirchhoff-Love Plate Equation with the Equation of a Membrane-like Electrical Network, where the coupling is of higher order given by the Laplacian of the displacement velocity $\gamma\Delta u_t$ and the Laplacian of the electric potential field $\gamma\Delta v_t $, here only one of the equations is conservative and the other has dissipative properties. The dissipative mechanism is given by an intermediate damping $(-\Delta)\theta v_t$ between the electrical damping potential for $\theta=0$ and the Laplacian of the electric potential for $\theta=1$. We show that $S(t)=e{\mathbb{B}t}$ is not analytic for $\theta\in[0, 1)$ and analytic for $\theta=1$, however $S(t)=e{\mathbb{B}t}$ decays exponentially for $0\leq \theta\leq 1$ and $S(t)$ is of Gevrey class $s> \frac{2+\theta}{\theta}$ when the parameter $\theta$ lies in the interval $(0,1)$.

Summary

We haven't generated a summary for this paper yet.