Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Rational Control with Partially Observable Continuous Nonlinear Dynamics (1908.04696v1)

Published 13 Aug 2019 in cs.AI, cs.SY, eess.SY, and q-bio.NC

Abstract: Continuous control and planning remains a major challenge in robotics and machine learning. Neuroscience offers the possibility of learning from animal brains that implement highly successful controllers, but it is unclear how to relate an animal's behavior to control principles. Animals may not always act optimally from the perspective of an external observer, but may still act rationally: we hypothesize that animals choose actions with highest expected future subjective value according to their own internal model of the world. Their actions thus result from solving a different optimal control problem from those on which they are evaluated in neuroscience experiments. With this assumption, we propose a novel framework of model-based inverse rational control that learns the agent's internal model that best explains their actions in a task described as a partially observable Markov decision process (POMDP). In this approach we first learn optimal policies generalized over the entire model space of dynamics and subjective rewards, using an extended Kalman filter to represent the belief space, a neural network in the actor-critic framework to optimize the policy, and a simplified basis for the parameter space. We then compute the model that maximizes the likelihood of the experimentally observable data comprising the agent's sensory observations and chosen actions. Our proposed method is able to recover the true model of simulated agents within theoretical error bounds given by limited data. We illustrate this method by applying it to a complex naturalistic task currently used in neuroscience experiments. This approach provides a foundation for interpreting the behavioral and neural dynamics of highly adapted controllers in animal brains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saurabh Daptardar (2 papers)
  2. Paul Schrater (19 papers)
  3. Xaq Pitkow (29 papers)

Summary

We haven't generated a summary for this paper yet.