Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Challenge of Spatial Cognition for Deep Learning (1908.04396v2)

Published 30 Jul 2019 in cs.CV

Abstract: Given the success of the deep convolutional neural networks (DCNNs) in applications of visual recognition and classification, it would be tantalizing to test if DCNNs can also learn spatial concepts, such as straightness, convexity, left/right, front/back, relative size, aspect ratio, polygons, etc., from varied visual examples of these concepts that are simple and yet vital for spatial reasoning. Much to our dismay, extensive experiments of the type of cognitive psychology demonstrate that the data-driven deep learning (DL) cannot see through superficial variations in visual representations and grasp the spatial concept in abstraction. The root cause of failure turns out to be the learning methodology, not the computational model of the neural network itself. By incorporating task-specific convolutional kernels, we are able to construct DCNNs for spatial cognition tasks that can generalize to input images not drawn from the same distribution of the training set. This work raises a precaution that without manually-incorporated priors or features DCCNs may fail spatial cognitive tasks at rudimentary level.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xi Zhang (302 papers)
  2. Xiaolin Wu (40 papers)
  3. Jun Du (130 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.