Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-timescale Trajectory Prediction for Abnormal Human Activity Detection (1908.04321v1)

Published 12 Aug 2019 in cs.CV

Abstract: A classical approach to abnormal activity detection is to learn a representation for normal activities from the training data and then use this learned representation to detect abnormal activities while testing. Typically, the methods based on this approach operate at a fixed timescale - either a single time-instant (eg. frame-based) or a constant time duration (eg. video-clip based). But human abnormal activities can take place at different timescales. For example, jumping is a short term anomaly and loitering is a long term anomaly in a surveillance scenario. A single and pre-defined timescale is not enough to capture the wide range of anomalies occurring with different time duration. In this paper, we propose a multi-timescale model to capture the temporal dynamics at different timescales. In particular, the proposed model makes future and past predictions at different timescales for a given input pose trajectory. The model is multi-layered where intermediate layers are responsible to generate predictions corresponding to different timescales. These predictions are combined to detect abnormal activities. In addition, we also introduce an abnormal activity data-set for research use that contains 4,83,566 annotated frames. Data-set will be made available at https://rodrigues-royston.github.io/Multi-timescale_Trajectory_Prediction/ Our experiments show that the proposed model can capture the anomalies of different time duration and outperforms existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Royston Rodrigues (1 paper)
  2. Neha Bhargava (5 papers)
  3. Rajbabu Velmurugan (8 papers)
  4. Subhasis Chaudhuri (35 papers)
Citations (77)

Summary

We haven't generated a summary for this paper yet.