Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RWR-GAE: Random Walk Regularization for Graph Auto Encoders (1908.04003v1)

Published 12 Aug 2019 in cs.LG, cs.SI, and stat.ML

Abstract: Node embeddings have become an ubiquitous technique for representing graph data in a low dimensional space. Graph autoencoders, as one of the widely adapted deep models, have been proposed to learn graph embeddings in an unsupervised way by minimizing the reconstruction error for the graph data. However, its reconstruction loss ignores the distribution of the latent representation, and thus leading to inferior embeddings. To mitigate this problem, we propose a random walk based method to regularize the representations learnt by the encoder. We show that the proposed novel enhancement beats the existing state-of-the-art models by a large margin (upto 7.5\%) for node clustering task, and achieves state-of-the-art accuracy on the link prediction task for three standard datasets, cora, citeseer and pubmed. Code available at https://github.com/MysteryVaibhav/DW-GAE.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com