Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Structurally-Strengthened Generative Adversarial Network for MRI Reconstruction (1908.03858v1)

Published 11 Aug 2019 in eess.IV and cs.CV

Abstract: Compressed sensing based magnetic resonance imaging (CS-MRI) provides an efficient way to reduce scanning time of MRI. Recently deep learning has been introduced into CS-MRI to further improve the image quality and shorten reconstruction time. In this paper, we propose an efficient structurally strengthened Generative Adversarial Network, termed ESSGAN, for reconstructing MR images from highly under-sampled k-space data. ESSGAN consists of a structurally strengthened generator (SG) and a discriminator. In SG, we introduce strengthened connections (SCs) to improve the utilization of the feature maps between the proposed strengthened convolutional autoencoders (SCAEs), where each SCAE is a variant of a typical convolutional autoencoder. In addition, we creatively introduce a residual in residual block (RIRB) to SG. RIRB increases the depth of SG, thus enhances feature expression ability of SG. Moreover, it can give the encoder blocks and the decoder blocks richer texture features. To further reduce artifacts and preserve more image details, we introduce an enhanced structural loss to SG. ESSGAN can provide higher image quality with less model parameters than the state-of-the-art deep learning-based methods at different undersampling rates of different subsampling masks, and reconstruct a 256*256 MR image in tens of milliseconds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenzhong Zhou (3 papers)
  2. Huiqian Du (1 paper)
  3. Wenbo Mei (1 paper)
  4. Liping Fang (1 paper)
Citations (15)

Summary

We haven't generated a summary for this paper yet.